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Donor–acceptor  (D–A)  conjugated  copolymers  contain-
ing  fused-ring  acceptor  units  demonstrate  outstanding  per-
formance  in  organic  solar  cells  (OSCs)[1−13].  We  have  in-
vented  highly  efficient  D–A  copolymer  donors  D18  and
D18-Cl  by  using  a  fused-ring  acceptor  unit,  dithieno
[3',2':3,4;2'',3'':5,6]benzo[1,2-c][1,2,5]thiadiazole  (DTBT)[1, 2].
OSCs  with  D18  or  D18-Cl  gave  power  conversion  efficiencies
(PCEs)  of  18.56%  and  18.69%,  respectively[3, 4].  Side  chain
engineering  is  an  effective  approach  to  improve  the  per-
formance  of  conjugated  polymers  in  optoelectronic  devi-
ces[14−16].  The  alkyl  side  chains  not  only  determine  polymers’
solubility, but also influence their crystallinity and mobility. In
this  work,  we  develop  two  efficient  donors  D18-B  and  D18-
Cl-B via side  chain  engineering  on  D18  polymers  (Fig.  1(a)).
These donors offer PCEs up to 18.74% (certified 18.2%) in tern-
ary OSCs.

The  structural  difference  between  D18  and  D18-B  (or
D18-Cl vs D18-Cl-B) polymers is the alkyl chains on thiophene
bridge units.  For  D18 and D18-Cl,  the side chain is  2-butyloc-
tyl,  and  for  D18-B  and  D18-Cl-B,  the  side  chain  is  3-butyl-
nonyl.  The synthesis  details  for  D18-B and D18-Cl-B are given
in  the  Supporting  Information.  To  figure  out  the  influence  of
molecular  weight  to  photovoltaic  performance  of  polymers,
we  prepared  D18-B  and  D18-Cl-B  samples  with  high,  moder-
ate  and  low  molecular  weights.  Different  molecular  weights
were achieved by adjusting the ratio between the donor and
acceptor  monomers  during  the  polymerization.  The  well-
studied  D18-B  and  D18-Cl-B  present  moderate  number-
average molecular weights (Mn) of 47.2 and 60.6 kDa, respect-
ively,  with  polydispersity  indexes  (PDI)  of  1.89  and  1.95,  re-
spectively.  D18-B and D18-Cl-B show similar absorption spec-
tra  in  either  solution  or  film,  indicating  that  F  or  Cl  substitu-
tion  has  negligible  influence  to  the  optical  properties  of  the
polymers  (Fig.  S7).  The  0–1  transition  peak  intensifies  in
both  polymer  films,  suggesting  the  H-aggregation  in  solid
state[17, 18].  The  optical  bandgaps  for  D18-B  and  D18-Cl-B  are
1.97  and  1.98  eV,  respectively.  Energy  levels  for  D18-B  and
D18-Cl-B were estimated by cyclic  voltammetry (CV)  (Fig.  S8).
The highest occupied molecular orbital  (HOMO) and the low-
est unoccupied molecular orbital (LUMO) levels are –5.51 and

–2.71  eV  for  D18-B,  and  –5.56  and  –2.68  eV  for  D18-Cl-B,  re-
spectively.  The hole mobilities  (μh)  from space-charge limited
current  (SCLC)  measurements  are  8.64  ×  10–4 and  6.93  ×
10–4 cm2/(V·s)  for  D18-B  and  D18-Cl-B,  respectively  (Fig.  S9).
Ternary  solar  cells  with  D18-B  or  D18-Cl-B  as  the  donor  and
N3[19]/PC61BM  as  the  acceptors  were  made.  Device  fabrica-
tion conditions were optimized (Tables S1–S8).  The best D18-
B:N3:PC61BM (1 :  1.4 :  0.2)  cells  gave a PCE of 18.53%, with an
open-circuit  voltage  (Voc)  of  0.823  V,  a  short-circuit  current
density  (Jsc) of  28.50  mA/cm2 and  a  fill  factor  (FF)  of  79.0%.
The best  D18-Cl-B:N3:PC61BM (1 :  1.4  :  0.2)  cells  offered a PCE
of  18.74%,  with  a Voc of  0.836 V,  a Jsc of  28.50  mA/cm2 and a
FF  of  78.7%  (Fig.  1(b), Table  1).  D18-Cl-B:N3:PC61BM  cells  af-
forded  the  highest  external  quantum  efficiency  (EQE)  of  90%
at  550  nm  (Fig.  1(c)).  The  addition  of  PC61BM  enhanced Jsc

and  FF  for  both  D18-B  and  D18-Cl-B  ternary  cells  (Tables  S2
and  S5),  suggesting  that  fullerene  balances  charge  transport
in the devices[20, 21]. The best D18-Cl-B devices were also meas-
ured at  the National  Institute of  Metrology (NIM),  and a certi-
fied PCE of 18.2% (Voc, 0.835 V; Jsc, 27.64 mA/cm2; FF, 78.9%; ef-
fective area, 2.580 mm2) was recorded (Fig. S10). The active lay-
er  morphology  was  investigated  by  atomic  force  microscope
(AFM).  Both  D18-B:N3:PC61BM  and  D18-Cl-B:N3:PC61BM  blend
films  present  typical  nano-structures  (Fig.  S11).  We  also
tested  the  performance  of  low-Mn and  high-Mn D18-B  or
D18-Cl-B  in  ternary  solar  cells  (Table  1).  Low-Mn and  high-Mn

D18-B  deliver  17.69%  and  17.36%  PCEs,  respectively,  while
low-Mn and  high-Mn D18-Cl-B  give  17.87%  and  17.39%  PCEs,
respectively.  Optimizing  the  molecular  weight  of  polymers  is
important for achieving the optimal performance.

In  short,  we  create  two  polymer  donors  D18-B  and  D18-
Cl-B via side  chain  engineering  on  D18  polymers.  PCEs  of
18.53% and 18.74% were  achieved,  respectively,  demonstrat-
ing their potential in organic solar cells.
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D18-Cl-BH 68.6 2.06 0.821 27.45 77.2 17.39 (17.22)
a  Data in parentheses stand for the average PCEs for 10 cells.

 

 

Fig.  1.  (Color  online)  (a)  Chemical  structures.  (b) J–V curves  for  D18-B:N3:PC61BM and D18-Cl-B:N3:PC61BM solar  cells.  (c)  EQE spectra  for  D18-
B:N3:PC61BM and D18-Cl-B:N3:PC61BM solar cells.
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